Forget Password?
Learn more
share this!
September 21, 2022
A powerful new genome editing technique is enabling researchers to replicate human diseases with unprecedented accuracy, promising to revolutionize the drug discovery process for a range of cancers.

googletag.cmd.push(function() { googletag.display(‘div-gpt-ad-1450190541376-1’); });

Advanced by a WEHI team, the technology can activate any gene—including those that have been silenced—allowing new targets and causes of drug resistance to be explored on an unmatched level.
Researchers have leveraged the unique technology to replicate an aggressive form of lymphoma for the first time, which they used to identify a gene responsible for triggering drug resistance to a new treatment for blood cancers currently used in Australia.
Lymphoma is the most common blood cancer in Australia, with about 6,500 Australians diagnosed each year. Double hit lymphoma (DHL) is an aggressive subtype that affects white blood cells called B lymphocytes, or B cells.
In a first, the research team was able to enhance a genome editing technology, known as CRISPR activation, to accurately mimic DHL. Project lead Professor Marco Herold said the team focused on DHL as the disease is difficult to treat, in part due to a lack of efficient pre-clinical modeling.
“Without the ability to model a disease, there are limited opportunities to properly test which drugs will be effective for it in the clinic,” said Professor Herold, who established and now leads one of Australia’s most advanced CRISPR laboratories at WEHI.
“The technology is a game-changer for the and people in the clinic as it allows us to mimic diseases like DHL and properly test drug treatments against them for the first time.
“This is significant when you think of the plethora of human diseases that could be better modeled by using this tool.”
The research has sparked international interest, with the WEHI team working closely with researchers from Nanjing University (China) and Genentech (US), a member of the Roche Group, to develop the technology.
The findings are published in Nature Communications.
Engineering resistance
Venetoclax is the result of a research collaboration between WEHI and companies Roche, Genentech (a member of the Roche Group) and AbbVie, and is based on groundbreaking scientific discoveries made at the Institute over three decades. It was developed by Roche, Genentech and AbbVie.
The anti-cancer drug is based on a discovery made at WEHI in the late 1980s, that a protein called BCL-2 helps cancer cells survive indefinitely.A1 is a pro-survival protein of the BCL-2 family. Activation of this gene has been reported in diverse forms of cancer, including leukemia, lymphoma, melanoma, stomach cancer and breast cancer.
While A1 had been thought to play an important role during cancer progression, Ph.D. student and first author, Yexuan Deng, said this had remained unverified—until now. “As DHL lymphomas from our model can be killed with venetoclax, we were able to leverage this to prove for the first time that A1 is a major factor in resistance to this drug,” Deng said.
While cancers are often triggered by switching genes on, researchers have largely only been able to switch them off in previous disease models. Project lead Associate Professor Gemma Kelly said the team was able to engineer drug resistance because their model can activate any gene—even those that have been silenced.
“We used this model’s unprecedented ability to switch on A1, which allowed us to confirm the protein as a resistance driver,” Associate Professor Kelly said. “Our research will allow for more genes to be activated in other models to better understand drivers and, critically, to determine other causes of .”
Trifecta of ‘firsts’
Co-lead author, Dr. Sarah Diepstraten, said the findings reveal A1 to be a promising drug target for DHL.
“That discovery was made because we were able to create a model for DHL that allowed us to switch on any gene,” Dr. Diepstraten said. “This proves the power of our technology when it comes to modeling human diseases and exploring why drug targets work or fail, on an unmatched level.”
The study, “Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance,” is published in Nature Communications.

Explore further

Suspect eliminated as a therapeutic target in B cell lymphoma

More information: Yexuan Deng et al, Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance, Nature Communications (2022). DOI: 10.1038/s41467-022-32485-9

Journal information: Nature Communications

Citation: Researchers advance CRISPR technology to replicate human diseases with unprecedented accuracy (2022, September 21) retrieved 22 September 2022 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further
Feedback to editors
16 hours ago
Sep 19, 2022
Sep 19, 2022
Sep 15, 2022
Sep 15, 2022
1 hour ago
8 hours ago
8 hours ago
8 hours ago
8 hours ago
8 hours ago
9 hours ago
Feb 05, 2020
Mar 31, 2022
May 24, 2022
May 09, 2022
Nov 17, 2021
Oct 11, 2018
11 hours ago
12 hours ago
8 hours ago
13 hours ago
13 hours ago
15 hours ago
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient’s address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we’ll never share your details to third parties.
More information Privacy policy
Daily science news on research developments and the latest scientific innovations
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.


Leave a Reply

Your email address will not be published.